Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu.

نویسندگان

  • B L Grigorenko
  • M S Shadrina
  • I A Topol
  • J R Collins
  • A V Nemukhin
چکیده

Elongation factor Tu (EF-Tu), the protein responsible for delivering aminoacyl-tRNAs (aa-tRNAs) to ribosomal A site during translation, belongs to the group of guanosine-nucleotide (GTP/GDP) binding proteins. Its active 'on'-state corresponds to the GTP-bound form, while the inactive 'off'-state corresponds to the GDP-bound form. In this work we focus on the chemical step, GTP+H(2)O-->GDP+Pi, of the hydrolysis mechanism. We apply molecular modeling tools including molecular dynamics simulations and the combined quantum mechanical-molecular mechanical calculations for estimates of reaction energy profiles for two possible arrangements of switch II regions of EF-Tu. In the first case we presumably mimic binding of the ternary complex EF-Tu.GTP.aa-tRNA to the ribosome and allow the histidine (His85) side chain of the protein to approach the reaction active site. In the second case, corresponding to the GTP hydrolysis by EF-Tu alone, the side chain of His85 stays away from the active site, and the chemical reaction GTP+H(2)O-->GDP+Pi proceeds without participation of the histidine but through water molecules. In agreement with the experimental observations which distinguish rate constants for the fast chemical reaction in EF-Tu.GTP.aa-tRNA.ribosome and the slow spontaneous GTP hydrolysis in EF-Tu, we show that the activation energy barrier for the first scenario is considerably lower compared to that of the second case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome.

Elongation factor Tu (EF-Tu) is a GTP-binding protein that delivers aminoacyl-tRNA to the A site of the ribosome during protein synthesis. The mechanism of GTP hydrolysis in EF-Tu on the ribosome is poorly understood. It is known that mutations of a conserved histidine residue in the switch II region of the factor, His84 in Escherichia coli EF-Tu, impair GTP hydrolysis. However, the partial rea...

متن کامل

Comment on "The mechanism for activation of GTP hydrolysis on the ribosome".

Voorhees et al. (Reports, 5 November 2010, p. 835) determined the structure of elongation factor Tu (EF-Tu) and aminoacyl-transfer RNA bound to the ribosome with a guanosine triphosphate (GTP) analog. However, their identification of histidine-84 of EF-Tu as deprotonating the catalytic water molecule is problematic in relation to their atomic structure; the terminal phosphate of GTP is more lik...

متن کامل

The Activity of Oligonucleotides Containing Guanosine S-Triphosphate in Protein Synthesis I. THE INTERACTION OF PROTEIN SYNTHESIS ELONGATION FACTOR I WITH CYTIDYLYL (5’-3’)- GUANOSINE 5’-TRIPHOSPHATE*

The interaction of protein synthesis elongation factor 1 (EF-1) from wheat embryos and elongation factor Tu from Escherichia coli with cytidylyl(5’-3’)guanosine 5’-triphosphate(pppGpC) has been studied. The dinucleotide 5’-triphosphate interacts strongly with EF-1 as evidenced by its capacity to inhibit the binding of [3H]GTP to the factor. The analogs pGpC and GpC do not interfere with GTP bin...

متن کامل

Activation of GTP hydrolysis in mRNA-tRNA translocation by elongation factor G

During protein synthesis, elongation of the polypeptide chain by each amino acid is followed by a translocation step in which mRNA and transfer RNA (tRNA) are advanced by one codon. This crucial step is catalyzed by elongation factor G (EF-G), a guanosine triphosphatase (GTPase), and accompanied by a rotation between the two ribosomal subunits. A mutant of EF-G, H91A, renders the factor impaire...

متن کامل

The mechanism for activation of GTP hydrolysis on the ribosome.

Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1784 12  شماره 

صفحات  -

تاریخ انتشار 2008